What is Llama 3
Llama 3 is an open-source large language model developed and released by Meta (formerly Facebook). It’s released under a commercially usable license, enabling local execution and fine-tuning.
Model Variations
| Model | Parameters | Use Case |
|---|---|---|
| Llama 3 8B | 8 billion | Lightweight, for local execution |
| Llama 3 70B | 70 billion | High performance, for servers |
| Llama 3 8B Instruct | 8 billion | Tuned for dialogue/instructions |
| Llama 3 70B Instruct | 70 billion | Tuned for dialogue/instructions |
Benchmarks
MMLU (Knowledge):
- GPT-4: 86.4%
- Llama 3 70B: 82.0%
- Llama 3 8B: 68.4%
HumanEval (Coding):
- GPT-4: 67.0%
- Llama 3 70B: 62.5%
- Llama 3 8B: 45.8%
Local Execution
Ollama
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
# Run Llama 3 8B
ollama run llama3:8b
# Interactive mode
>>> What is the capital of France?
The capital of France is Paris.
Python (transformers)
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Explain quantum computing simply."}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=256,
do_sample=True,
temperature=0.7
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
llama.cpp (C++ Implementation)
# Build llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
# Download GGUF model
# Get quantized version from Hugging Face
# Run
./main -m models/llama-3-8b-instruct.Q4_K_M.gguf \
-p "What is machine learning?" \
-n 256
Using as API Service
vLLM
from vllm import LLM, SamplingParams
llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
sampling_params = SamplingParams(temperature=0.7, max_tokens=256)
prompts = [
"Explain the theory of relativity",
"Write a Python function to sort a list"
]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
print(output.outputs[0].text)
OpenAI-Compatible API (Ollama)
# Start server
ollama serve
# OpenAI-compatible endpoint
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3:8b",
"messages": [{"role": "user", "content": "Hello!"}]
}'
// Use from JavaScript/TypeScript
import OpenAI from 'openai';
const openai = new OpenAI({
baseURL: 'http://localhost:11434/v1',
apiKey: 'ollama' // Ollama requires no authentication
});
const response = await openai.chat.completions.create({
model: 'llama3:8b',
messages: [{ role: 'user', content: 'Hello!' }]
});
Fine-Tuning
Using LoRA
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, get_peft_model
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3-8B",
torch_dtype=torch.bfloat16
)
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05
)
model = get_peft_model(model, lora_config)
# Run training...
Use Cases
RAG Application
from langchain_community.llms import Ollama
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
llm = Ollama(model="llama3:8b")
vectorstore = Chroma(...)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever()
)
result = qa_chain.invoke("What is our return policy?")
Code Generation
prompt = """
Write a Python function that:
1. Takes a list of numbers
2. Filters out negative numbers
3. Returns the sum of remaining numbers
Include docstring and type hints.
"""
response = llm.generate(prompt)
Hardware Requirements
| Model | VRAM | RAM |
|---|---|---|
| 8B (FP16) | 16GB | 32GB |
| 8B (Q4) | 6GB | 16GB |
| 70B (FP16) | 140GB | 256GB |
| 70B (Q4) | 40GB | 64GB |
Summary
Llama 3 is a powerful open-source large language model available for commercial use. It enables flexible usage including local execution, fine-tuning, and API service deployment. Ideal for privacy-focused applications and use cases requiring customization.
← Back to list